229 Fonctions monotones. Fonctions convexes. Exemples et applications.

I - Fonctions monotones

1. Définition et première propriétés

Définition 1. Soient *X* une partie de \mathbb{R} et $f: X \to \mathbb{R}$.

p. 31

- On dit que f est **croissante** si $\forall x, y \in X$, $x \le y \implies f(x) \le f(y)$.
- On dit que f est **décroissante** si $\forall x, y \in X, x \le y \implies f(x) \ge f(y)$.
- On dit que f est **monotone** si f est croissante ou décroissante.

Remarque 2. Les définitions de f strictement croissante et f strictement décroissante s'obtiennent en remplaçant les inégalités larges par des inégalités strictes dans la définition précédente.

Par conséquent, f est décroissante si et seulement si -f est croissante. Pour cette raison, nous pouvons nous limiter à l'étude des fonctions croissantes.

Exemple 3. $x \mapsto \lfloor x \rfloor$ est une fonction monotone.

Proposition 4. L'ensemble des fonctions croissantes est stable par addition, par multiplication par un scalaire positif et par composition.

[**D-L**] p. 405

Proposition 5. Soient $I \subseteq \mathbb{R}$ un intervalle non réduit à un point et $f : I \to \mathbb{R}$. On suppose f dérivable sur \mathring{I} . Alors f est croissante si et seulement si $f'(x) \ge 0$ pour tout $x \in I$.

[ROM19-1] p. 205

2. Régularité

Soit $I \subseteq \mathbb{R}$ un intervalle non réduit à un point.

p. 162

Définition 6. On dit que $f: I \to \mathbb{R}$ a pour **limite à gauche** (resp. **à droite**) ℓ en $\alpha \in \overline{I}$ si :

$$\forall \epsilon > 0$$
, $\exists \eta > 0$, tel que $\forall x \in I \cap]\alpha - \eta$, $\alpha[$, $|f(x) - \ell| < \epsilon$

(resp. $\forall \epsilon > 0$, $\exists \eta > 0$, tel que $\forall x \in I \cap]\alpha, \alpha + \eta[, |f(x) - \ell| < \epsilon)$.

Théorème 7. On suppose que I est un intervalle ouvert. Si $f: I \to \mathbb{R}$ est une fonction monotone, elle admet alors une limite à gauche et à droite en tout point. Dans le cas où f est croissante, on a

$$\forall x \in I, \quad f(x^{-}) = \sup_{\substack{t \in I \\ t > x}} f(t) \le f(x) \le f(x^{+}) = \inf_{\substack{t \in I \\ t > x}} f(t)$$

Définition 8. Si $\alpha \in \mathring{I}$, et si $f : I \to \mathbb{R}$ est discontinue en α avec des limites à gauche et à droite en ce point, on dit que f a une **discontinuité de première espèce** en α .

Proposition 9. Une fonction monotone de I dans \mathbb{R} ne peut avoir que des discontinuités de première espèce.

Théorème 10. On suppose que I est un intervalle ouvert. Si $f: I \to \mathbb{R}$ est une fonction monotone, alors l'ensemble des points de discontinuités de f est dénombrable.

Exemple 11. La fonction f définie sur [0,1] par f(0)=0 et $f(x)=\frac{1}{\lfloor \frac{1}{x} \rfloor}$ est croissante avec une infinité de points de discontinuité.

Proposition 12. Si $f: I \to \mathbb{R}$ est une fonction monotone telle que f(I) est un intervalle, elle est alors continue sur I.

p. 175

Théorème 13 (Bijection). Si $f: I \to \mathbb{R}$ est une application continue et strictement monotone, alors :

- (i) f(I) est un intervalle.
- (ii) f^{-1} est continue.
- (iii) f^{-1} est strictement monotone de même sens de variation que f.

Exemple 14. La fonction $\exp : x \mapsto e^x$ est une bijection de \mathbb{R} dans \mathbb{R}^+_* qui admet donc une bijection réciproque ln qui est strictement croissante.

Proposition 15. Soit $f: I \to \mathbb{R}$. Cette fonction f est injective si et seulement si elle est strictement monotone.

Théorème 16 (Lebesgue). Une application monotone est dérivable presque partout.

[**D-L**] p. 405

3. Suites et séries

Lemme 17. Une limite simple d'une suite de fonctions croissantes est croissante.

[**GOU20**] p. 238

Théorème 18 (Second théorème de Dini). Soit (f_n) une suite de fonctions croissantes réelles continues définies sur un segment I de \mathbb{R} . Si (f_n) converge simplement vers une fonction continue sur I, alors la convergence est uniforme.

p. 212

Proposition 19 (Comparaison série - intégrale). Soit $f : \mathbb{R}^+ \to \mathbb{R}^+$ une fonction positive, continue par morceaux et décroissante sur \mathbb{R}^+ . Alors la suite (U_n) définie par

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} f(k) - \int_{0}^{n} f(t) dt$$

est convergente. En particulier, la série $\sum f(n)$ et l'intégrale $\int_0^{+\infty} f(t) \, \mathrm{d}t$ sont de même nature.

Application 20 (Développement asymptotique de la série harmonique).

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$$

où γ désigne la constante d'Euler.

II - Fonctions convexes

Soit *I* une partie convexe d'un espace vectoriel normé $(E, \|.\|)$ non réduite à un point.

1. Définitions

Définition 21. — I est **convexe** si $\forall a, b \in I$, $[a, b] \subseteq I$.

— Une fonction $f: I \to \mathbb{R}$ est **convexe** si

$$\forall x,y \in I, \, \forall t \in [0,1], f((1-t)x+ty) \leq (1-t)f(x)+tf(y)$$

— Une fonction $f: I \to \mathbb{R}$ est **concave** si -f est convexe.

Remarque 22. Les définitions de f strictement convexe et f strictement concave s'obtiennent en remplaçant les inégalités larges par des inégalités strictes dans la définition précédente.

[ROM19-1] p. 225 **Exemple 23.** $-x \mapsto ||x||$ est convexe sur E.

— exp est convexe sur \mathbb{R} .

Proposition 24. Une fonction $f: I \to \mathbb{R}$ est convexe si et seulement si son épigraphe est convexe dans $E \times \mathbb{R}$.

Théorème 25. Une fonction $f: I \to \mathbb{R}$ est convexe si et seulement si $\forall x, y \in I$, $t \mapsto f((1-t)x+ty)$ est convexe sur [0,1].

Ce dernier théorème justifie que l'étude des fonctions convexes se ramène à l'étude des fonctions convexes sur un intervalle réel.

Proposition 26. — Une combinaison linéaire à coefficients positifs de fonctions convexes est convexe.

- La composée $\varphi \circ g$ d'une fonction convexe croissante $\varphi : J \to \mathbb{R}$ avec une fonction fonction convexe $g : I \to J$ est croissante.
- Une limite simple d'une suite de fonctions convexes est convexe.

À partir de maintenant, on supposera que I est un intervalle réel non réduit à un point.

2. Propriétés sur $\mathbb R$

Remarque 27. Dans le cadre réel, la Définition 21 revient à dire que les cordes [(a, f(a)), (b, f(b))] sont au-dessus du graphe de f pour tout $a, b \in I$ avec a < b.

[**GOU20**] p. 95

Proposition 28. Une fonction $f: I \to \mathbb{R}$ est convexe si et seulement si $\forall x_0 \in I$, l'application

$$\begin{array}{ccc} I \setminus \{x_0\} & \to & \mathbb{R} \\ x & \mapsto & \frac{f(x) - f(x_0)}{x - x_0} \end{array}$$

est croissante.

Corollaire 29 (Inégalité des trois pentes). Soient fonction $f: I \to \mathbb{R}$ convexe et $a, b, c \in I$ tels que a < b < c. Alors,

$$\frac{f(b)-f(a)}{b-a}<\frac{f(c)-f(a)}{c-a}<\frac{f(c)-f(b)}{c-b}$$

Définition 30. On dit que $f: I \to \mathbb{R}$ est **dérivable à gauche** (resp. à droite) en $\alpha \in I$ si la

p. 71

limite

$$\lim_{\substack{t \to a^-\\ t \in I}} \frac{f(t) - f(a)}{t - a}$$

(resp. $\lim_{\substack{t \to a^+ \\ t \in I}} \frac{f(t) - f(a)}{t - a}$) existe.

Proposition 31. Une fonction $f: I \to \mathbb{R}$ convexe possède en tout point de \mathring{I} une dérivée à droite et une dérivée à gauche. Elle est donc continue sur \mathring{I} . De plus les applications dérivées à gauche f'_g et à droite f'_d sont croissantes avec $f'_g(x) \le f'_d(x)$ pour tout $x \in \mathring{I}$.

p. 96

Théorème 32. Soit $f: I \to \mathbb{R}$ une fonction dérivable sur I. Alors, les assertions suivantes sont équivalentes :

- (i) f est convexe.
- (ii) f' est croissante.
- (iii) La courbe représentative de f est au-dessus de ses tangentes.

Proposition 33. Une fonction $f: I \to \mathbb{R}$ deux fois dérivable est convexe si et seulement si $f''(x) \ge 0$ pour tout $x \in I$.

3. Fonctions log-convexes

Définition 34. On dit qu'une fonction $f: I \to \mathbb{R}^+_*$ est **log-convexe** si $\ln \circ f$ est convexe sur I.

[ROM19-1] p. 228

Proposition 35. Une fonction log-convexe est convexe.

Contre-exemple 36. $x \mapsto x$ est convexe mais non log-convexe.

Théorème 37. Pour une fonction $f: I \to \mathbb{R}^+_*$, les assertions suivantes sont équivalentes :

- (i) *f* est log-convexe.
- (ii) $\forall \alpha > 0, x \mapsto \alpha^x f(x)$ est convexe.
- (iii) $\forall x, y \in I, \forall t \in [0, 1], f((1 t)x + ty) \le (f(x))^{1 t} (f(y))^t$.
- (iv) $\forall \alpha > 0, f^{\alpha}$ est convexe.

Lemme 38. La fonction Γ définie pour tout x > 0 par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$ vérifie :

(i) $\forall x \in \mathbb{R}^+_*$, $\Gamma(x+1) = x\Gamma(x)$.

p. 364

- (ii) $\Gamma(1) = 1$.
- (iii) Γ est log-convexe sur \mathbb{R}_*^+ .

[DEV]

Théorème 39 (Bohr-Mollerup). Soit $f : \mathbb{R}^+_* \to \mathbb{R}^+$ vérifiant le Point (i), Point (ii) et Point (iii) du Lemme 38. Alors $f = \Gamma$.

p. 364

Remarque 40. À la fin de la preuve, on obtient une formule due à Gauss :

$$\forall x \in]0,1], \Gamma(x) = \lim_{n \to +\infty} \frac{n^x n!}{(x+n)\dots(x+1)x}$$

que l'on peut aisément étendre à \mathbb{R}^+_* entier.

III - Applications

1. Inégalités

Proposition 41 (Inégalité de Hölder). Soient p, q > 0 tels que $\frac{1}{p} + \frac{1}{q} = 1$. Alors,

[**GOU20**] p. 97

$$\forall a_1, \dots, a_n, b_1, \dots, b_n \ge 0, \sum_{i=1}^n a_i b_i \le \left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}}$$

Proposition 42 (Inégalité de Minkowski). Soit $p \ge 1$. Alors,

$$\forall x_1, \dots, x_n, y_1, \dots, y_n \ge 0, \left(\sum_{i=1}^n |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n y_i^p\right)^{\frac{1}{p}}$$

Proposition 43 (Inégalité de Jensen). Si $f : \mathbb{R} \to \mathbb{R}$ est convexe, alors pour toute fonction u continue sur un intervalle [a, b], on a :

[ROM19-1] p. 241

$$f\left(\frac{1}{b-a}\int_{a}^{b}u(t)\,\mathrm{d}t\right) \leq \frac{1}{b-a}\int_{a}^{b}f\circ u(t)\,\mathrm{d}t$$

Proposition 44 (Comparaison des moyennes harmonique, géométrique et arithmétique). Pour toute suite finie $x = (x_i)$ de n réels strictement positifs, on a :

$$\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} \le \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}} \le \frac{1}{n} \sum_{i=1}^{n} x_i$$

2. Recherche d'extrema

Proposition 45. Une fonction $f : \mathbb{R} \to \mathbb{R}$ est constante si et seulement si elle est convexe et majorée.

p. 234

[ROU]

p. 152

Contre-exemple 46. La fonction f définie sur \mathbb{R}^+ par $f(x) = \frac{1}{1+x}$ est convexe, majorée, mais non constante.

Proposition 47. Si $f: I \to \mathbb{R}$ est convexe et est dérivable en un point $\alpha \in \mathring{I}$ tel que $f'(\alpha) = 0$, alors f admet un minimum global en α .

Proposition 48. Si $f: I \to \mathbb{R}$ est convexe et admet un minimum local, alors ce minimum est global.

3. Méthode de Newton

[DEV]

Théorème 49 (Méthode de Newton). Soit $f:[c,d]\to\mathbb{R}$ une fonction de classe \mathscr{C}^2 strictement croissante sur [c,d]. On considère la fonction

$$\varphi: \begin{bmatrix} [c,d] & \to & \mathbb{R} \\ x & \mapsto & x - \frac{f(x)}{f'(x)} \end{bmatrix}$$

(qui est bien définie car f' > 0). Alors :

- (i) $\exists ! a \in [c, d]$ tel que f(a) = 0.
- (ii) $\exists \alpha > 0$ tel que $I = [a \alpha, a + \alpha]$ est stable par φ .
- (iii) La suite (x_n) des itérés (définie par récurrence par $x_{n+1} = \varphi(x_n)$ pour tout $n \ge 0$) converge quadratiquement vers a pour tout $x_0 \in I$.

Corollaire 50. En reprenant les hypothèses et notations du théorème précédent, et en supposant de plus f strictement convexe sur [c,d], le résultat du théorème est vrai sur I = [a,d]. De plus :

- (i) (x_n) est strictement décroissante (ou constante).
- (ii) $x_{n+1} a \sim \frac{f''(a)}{2f'(a)} (x_n a)^2 \text{ pour } x_0 > a.$

Exemple 51. — On fixe y > 0. En itérant la fonction $F: x \mapsto \frac{1}{2} \left(x + \frac{y}{x} \right)$ pour un nombre de départ compris entre c et d où 0 < c < d et $c^2 < 0 < d^2$, on peut obtenir une

- approximation du nombre \sqrt{y} .
- En itérant la fonction $F: x \mapsto \frac{x^2+1}{2x-1}$ pour un nombre de départ supérieur à 2, on peut obtenir une approximation du nombre d'or $\varphi = \frac{1+\sqrt{5}}{2}$.

Bibliographie

Leçons pour l'agrégation de mathématiques

[D-L]

Maximilien Dreveton et Joachim Lhabouz. *Leçons pour l'agrégation de mathématiques. Préparation à l'oral.* Ellipses, 28 mai 2019.

https://www.editions-ellipses.fr/accueil/3543-13866-lecons-pour-lagregation-de-mathematiques-preparation-a-loral-9782340030183.html.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Formulaire de maths [R-R]

Olivier Rodot et Jean-Étienne Rombaldi. *Formulaire de maths. Avec résumés de cours.* De Boeck Supérieur, 30 août 2022.

https://www.deboecksuperieur.com/ouvrage/9782807339880-formulaire-de-maths.

Éléments d'analyse réelle

[ROM19-1]

Jean-Étienne ROMBALDI. Éléments d'analyse réelle. 2^e éd. EDP Sciences, 6 juin 2019. https://laboutique.edpsciences.fr/produit/1082/9782759823789/elements-d-analyse-reelle.

Petit guide de calcul différentiel

[ROU]

François Rouvière. *Petit guide de calcul différentiel. à l'usage de la licence et de l'agrégation.* 4^e éd. Cassini, 27 fév. 2015.

https://store.cassini.fr/fr/enseignement-des-mathematiques/94-petit-guide-de-calcul-differentiel-4e-ed.html.