214 Théorème d'inversion locale, théorème des fonctions implicites. Illustrations en analyse et en géométrie.

Soient E et F deux espaces de Banach et $U \subseteq E$ un ouvert.

I - Théorème d'inversion locale

1. Difféomorphisme

Pour une fonction réelle $f : \mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^1 , on sait que si $f'(x) \neq 0$ pour tout $x \in \mathbb{R}$, alors f admet un inverse global f^{-1} qui vérifie

[**GOU20**] p. 341

$$\forall x \in \mathbb{R}, f'(f(x)) = \frac{1}{f'(x)}$$

L'objectif ici va être de généraliser ce résultat.

Définition 1. Soit $f: U \to F$. On dit que f est un **difféomorphisme** de classe \mathscr{C}^k de U sur V = f(U) si f et f^{-1} sont bijectives et de classe \mathscr{C}^k respectivement sur U et V.

[**ROU**] p. 54

Proposition 2. On se place dans le cas où $E = \mathbb{R}^n$ et $F = \mathbb{R}^p$. Soit $f: U \to F$ un difféomorphisme. Alors :

(i) Pour tout $x \in U$, en posant y = f(x),

$$d(f^{-1})_{v} \circ df_{x} = id$$

(ii) n = p.

Exemple 3. $x \mapsto x^3$ est un homéomorphisme de \mathbb{R} sur \mathbb{R} , de classe \mathscr{C}^1 , mais n'est pas un difféomorphisme.

2. Énoncé

Théorème 4 (Inversion locale). Soit $f: U \to F$ de classe \mathscr{C}^1 . On suppose qu'il existe $a \in U$ tel que d f_a est inversible.

Alors, il existe V voisinage de a et W voisinage de f(a) tels que $f_{|V}$ soit un difféomorphisme de classe \mathscr{C}^1 de V sur W.

[**GOU20**] p. 341

Remarque 5. Si $E = F = \mathbb{R}^n$, d f_a est inversible si et seulement si le jacobien de f en a, det Jac(f) $_a$, est non nul.

Corollaire 6. Soit $f: U \to \mathbb{R}^q$ de classe \mathscr{C}^1 . On suppose que pour tout $a \in U$, d f_a est inversible. Alors f est une application ouverte.

Exemple 7. L'application de \mathbb{R}^2 dans \mathbb{R}^2 définie par $(x,y)\mapsto (x^2-y^2,xy)$ est un difféomorphisme de classe \mathscr{C}^{∞} en tout point de $\mathbb{R}^2\setminus (0,0)$.

p. 347

Application 8. Soit $\varphi: U \to \mathbb{R}^n$ un difféomorphisme de classe \mathscr{C}^1 . Alors, $V = \varphi(U)$ est mesurable et tout fonction f appartient à L_1 si et seulement si $|\det \operatorname{Jac}(\varphi)_a| f \circ \varphi$ appartient à L_1 . Dans ce cas,

[**BMP**] p. 9

 $\int_{V} f(x) dx = \int_{U} |\det \operatorname{Jac}(\varphi)_{a}| f(\varphi(y)) dy$

Exemple 9. En passant en coordonnées polaires,

[**GOU20**] p. 355

$$\int_{\mathbb{R}} e^{-x^2} \, \mathrm{d}x = \sqrt{\pi}$$

[**BMP**] p. 9

Application 10. Soient $A \in \mathcal{M}_n(\mathbb{R})$ et k un entier. Alors, si A est suffisamment proche de l'identité I_n , A est une racine k-ième (ie. $\exists B \in \mathcal{M}_n(\mathbb{R})$ telle que $B^k = A$).

3. Généralisation

Théorème 11 (Inversion globale). Soit $f: U \to F$ de classe \mathscr{C}^1 . Alors, f est un difféomorphisme de classe \mathscr{C}^1 de U sur V = f(U) si et seulement si f est injective sur U et $\mathrm{d} f_a$ est un isomorphisme pour tout $a \in U$.

p. 13

Exemple 12. L'application de l'Exemple 7 n'est pas un difféomorphisme global.

[**GOU20**] p. 347

Remarque 13. Il existe une version holomorphe de ce théorème :

[ROU]

Soient U un ouvert connexe de \mathbb{C} et $f:U\to\mathbb{C}$ holomorphe sur U. On suppose f injective sur U. Alors, V=f(U) est un ouvert (connexe) de \mathbb{C} et f est un difféomorphisme holomorphe de classe \mathscr{C}^1 de U sur V.

Remarquons que seule l'injectivité de f suffit.

p. 191

Théorème 14 (du rang constant). On se place dans le cas où $E = \mathbb{R}^n$ et $F = \mathbb{R}^p$. Soit $f : U \to \mathbb{R}^p$ de classe \mathscr{C}^1 . On suppose que le rang de $\mathrm{d} f_x$ est constant égal à $r \le n$ pour tout $x \in U$. Soit $a \in U$. Alors, il existe V voisinage de a, W voisinage de f(a) et deux difféomorphismes $\phi : V \to V$ et $\psi : W \to W$ tels que

$$\phi \circ f \circ \psi = \pi_r$$

où π_r désigne la projection de \mathbb{R}^n sur \mathbb{R}^r : π_r : $(x_1,\ldots,x_n)\mapsto (x_1,\ldots,x_{r-1},x_r,0,\ldots,0)$.

II - Théorème des fonctions implicites

1. Énoncé

Définition 15. Soient E_1, \ldots, E_n , F des espaces de Banach, $\Omega \subseteq E$ un ouvert où $E = E_1 \times \cdots \times E_n$ et $a = (a_1, \ldots, a_n) \in E$. Soit $f : \Omega \to F$. Alors, pour tout $i \in [\![1, n]\!]$, $f_i : x \mapsto f(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$ est définie sur un voisinage de a_i dans E_i . Si elle est différentiable en a_i , on dit que f admet une **différentielle partielle** d'indice i en a, et on note celle-ci $\partial_i f_a$.

[**GOU20**] p. 344

Remarque 16. En reprenant les notations précédentes :

- Si pour tout $i \in [1, n]$, $E_i = \mathbb{R}$ et $F = E = \mathbb{R}^n$, alors $\partial_i f_a = h \frac{\partial f}{\partial x_i}(a)$.
- Si f est différentiable en a, alors pour tout $i \in [1, n]$, $\partial_i f_a$ existe et

$$\forall h = (h_1, \dots, h_n) \in E, df_a(h) = \sum_{i=1}^n \partial_i f_a(h_i)$$

Théorème 17 (des fonctions implicites). Soient E, F, G trois espaces de Banach. Soient $U \times V \subseteq E \times F$ où U et V sont des ouvertes. Soit $f: U \times V \to G$ de classe \mathscr{C}^1 . On suppose qu'il existe $(a,b) \in U \times V$ tel que f(a,b) = 0 et $\partial_2 f_{(a,b)} : F \to G$ est un isomorphisme. Alors, il existe :

- Un voisinage ouvert U_0 de a dans U.
- Un voisinage ouvert $W \operatorname{de} f(a, b)$.
- Un voisinage ouvert Ω de (a, b) dans $U \times V$.
- Une fonction $\varphi: U_0 \times W \to V$ de classe \mathscr{C}^1 .

Vérifiant:

$$\forall x \in U_0, \forall z \in W, \exists ! y \in V \text{ tel que } f(x, y) = z \text{ avec } (x, y) \in \Omega \text{ et } y = \varphi(x, z)$$

En particulier,

$$\forall (x,z) \in U_0 \times W, f(x,\varphi(x,z)) = z$$

Remarque 18. Avec les notations précédentes, si $E = F = \mathbb{R}$, on peut choisir n'importe quelle variable pour obtenir

[BMP] p. 11

$$y = \varphi(x)$$
 si $\frac{\partial f}{\partial y}(a, b) \neq 0$ ou $x = \varphi(y)$ si $\frac{\partial f}{\partial y}(a, b) \neq 0$

[ROU] p. 193

Remarque 19. La signification de ce théorème est que la surface définie implicitement par l'équation f(x, y) = 0 peut, au moins localement, être vue comme le graphe d'une fonction φ.

Proposition 20. Avec les notations précédentes, la différentielle de la fonction implicite φ est donnée par:

$$\mathrm{d}\varphi_x = -(\partial_2 f_{(x,\varphi(x))})^{-1} \circ (\partial_1 f_{(x,\varphi(x))})$$

2. Exemples

Exemple 21. Pour l'équation $x^2 + y^2 - 1 = 0$, on a $\partial_2 f_{(x,y)} = 2y$. On exclue les points où y=0. En prenant (0,1) et (0,-1) pour points de départ, on a deux fonctions implicites qui correspondent aux demi-cercles supérieur et inférieur :

-
$$y = \varphi_1(x) = \sqrt{1 - x^2}$$
.
- $y = \varphi_2(x) = -\sqrt{1 - x^2}$.

$$-y = \varphi_2(x) = -\sqrt{1-x^2}.$$

De plus, en dérivant par rapport à x: 2x + 2yy' = 0 et, $y' = \varphi_1'(x) = \frac{-x}{y}$.

p. 237

Exemple 22 (Folium de Descartes). Soit $C = \{(x, y) \in \mathbb{R}^2 \mid x^3 + y^3 - 3xy = 0\}$. En tout point $(a,b) \in \mathbb{R}^2 \setminus \{(0,0),(2^{\frac{2}{3}},2^{\frac{1}{3}})\}$, C peut être vu comme le graphe d'une fonction φ telle que

$$\varphi'(a) = \frac{a^2 - b}{a - b^2}$$

Exemple 23. Soit $f:(x,y) \mapsto \sin(y) + xy^4 + x^2$. Alors, il existe U, V deux voisinages ouverts de 0 dans \mathbb{R} , $y = \varphi(x) \in V$ est l'unique solution de f(x, y) = 0. De plus, on a un développement limité de φ :

[GOU20] p. 348

$$\varphi(x) = -x^2 - \frac{x^6}{6} - x^9 - \frac{x^{10}}{40} + o(x^{11})$$

III - Applications

1. Homéomorphismes

Lemme 24. Soit $A_0 \in \mathscr{S}_n(\mathbb{R})$ inversible. Alors il existe un voisinage V de A_0 dans $\mathscr{S}_n(\mathbb{R})$ et une application $\psi: V \to \mathrm{GL}_n(\mathbb{R})$ de classe \mathscr{C}^1 telle que

[**ROU**] p. 209

p. 354

$$\forall A \in V$$
, $A = {}^t \psi(A) A_0 \psi(A)$

[DEV]

Lemme 25 (Morse). Soit $f: U \to \mathbb{R}$ une fonction de classe \mathscr{C}^3 (où U désigne un ouvert de \mathbb{R}^n contenant l'origine). On suppose :

- $df_0 = 0$.
- La matrice symétrique $Hess(f)_0$ est inversible.
- La signature de $\operatorname{Hess}(f)_0$ est (p, n-p).

Alors il existe un difféomorphisme $\phi = (\phi_1, \dots, \phi_n)$ de classe \mathscr{C}^1 entre deux voisinage de l'origine de \mathbb{R}^n $V \subseteq U$ et W tel que $\varphi(0) = 0$ et

$$\forall x \in U, f(x) - f(0) = \sum_{k=1}^{p} \phi_k^2(x) - \sum_{k=p+1}^{n} \phi_k^2(x)$$

p. 334

Exemple 26. On considère $f:(x,y)\mapsto x^2-y^2+\frac{y^4}{4}$. La courbe d'équation

$$f(x,y)=0$$

est (au changement près du nom des coordonnées) une projection de l'intersection d'un cylindre et d'une sphère tangents. On a

$$f = u^2 - v^2$$

avec
$$u:(x,y)\mapsto x$$
 et $v:(x,y)\mapsto y\sqrt{1-\frac{y^2}{4}}$.

p. 341

Application 27. Soit S la surface d'équation z = f(x, y) où f est de classe \mathscr{C}^3 au voisinage de l'origine. On suppose la forme quadratique d^2f_0 non dégénérée. Alors, en notant P le plan tangent à S en 0:

- (i) Si d^2f_0 est de signature (2,0), alors S est au-dessus de P au voisinage de 0.
- (ii) Si d^2f_0 est de signature (0,2), alors S est en-dessous de P au voisinage de 0.
- (iii) Si d^2f_0 est de signature (1, 1), alors S traverse P selon une courbe admettant un point double en (0, f(0)).

[**BMP**] p. 15

Application 28. Soit $f : \mathbb{R}^n \to \mathbb{R}$ de classe \mathscr{C}^3 telle que $\mathrm{d} f_0 = 0$ et $\mathrm{d}^2 f_0$ est définie positive. Alors 0 est un minimum local (strict) de f.

2. Optimisation

Théorème 29 (Extrema liés). Soit U un ouvert de \mathbb{R}^n et soient $f, g_1, \ldots, g_r : U \to \mathbb{R}$ des fonctions de classe \mathscr{C}^1 . On note $\Gamma = \{x \in U \mid g_1(x) = \cdots = g_r(x) = 0\}$. Si $f_{\mid \Gamma}$ admet un extremum relatif en $a \in \Gamma$ et si les formes linéaires $d(g_1)_a, \ldots, d(g_r)_a$ sont linéairement indépendantes, alors il existe des uniques $\lambda_1, \ldots, \lambda_r$ tels que

[GOU20] p. 337

$$\mathrm{d}f_a = \lambda_1 \mathrm{d}(g_1)_a + \dots + \lambda_r \mathrm{d}(g_r)_a$$

Définition 30. Les $\lambda_1, \dots, \lambda_r$ du théorème précédent sont appelés appelés **multiplicateurs** de Lagrange.

Remarque 31. La relation finale du Théorème 29 équivaut à

[**BMP**] p. 21

$$\bigcap_{i=1}^{n} \operatorname{Ker}(\operatorname{d}(g_i)_a) \subseteq \operatorname{Ker}(\operatorname{d}f_a)$$

et elle exprime que d f_a est nulle sur l'espace tangent à Γ en a (ie. ∇f_a est orthogonal à l'espace tangent à Γ en a).

Contre-exemple 32. On pose $g:(x,y)\mapsto x^3-y^2$ et on considère $f:(x,y)\mapsto x+y^2$. On cherche à minimiser f sous la contrainte g(x,y)=0.

Alors, le minimum (global) de f sous cette contrainte est atteint en (0,0), la différentielle de g en (0,0) est nulle et la relation finale du Théorème 29 n'est pas vraie.

Application 33 (Théorème spectral). Tout endomorphisme symétrique d'un espace euclidien se diagonalise dans une base orthonormée.

Application 34.

p. 35

$$\mathrm{SO}_n(\mathbb{R}) = \left\{ M \in \mathcal{M}_n(\mathbb{R}) \mid \|M\|^2 = \inf_{P \in \mathrm{SL}_n(\mathbb{R})} \|P\|^2 \right\}$$

où $\|.\|: M \mapsto \sqrt{\operatorname{trace}({}^t M M)}$ (ie. $\operatorname{SO}_n(\mathbb{R})$ est l'ensemble des matrices de $\operatorname{SL}_n(\mathbb{R})$ qui minimisent la norme euclidienne canonique de $\mathcal{M}_n(\mathbb{R})$).

[**GOU20**] p. 339

[DEV]

Application 35 (Inégalité arithmético-géométrique).

$$\forall (x_1, \dots, x_n) \in (\mathbb{R}^+)^n, \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}} \le \frac{1}{n} \sum_{i=1}^n x_i$$

Application 36 (Inégalité d'Hadamard).

[**ROU**] p. 409

[BMP]

p. 11

$$\forall (x_1, ..., x_n) \in \mathbb{R}^n, \det(x_1, ..., x_n) \le ||x_1|| ... ||x_n||$$

avec égalité si et seulement si (x_1, \dots, x_n) est une base orthogonale de \mathbb{R}^n .

3. Régularité des racines d'un polynôme

Proposition 37. Soient $P_0 \in \mathbb{R}_n[X]$ et $x_0 \in \mathbb{R}$ une racine simple de P_0 . Alors, il existe φ une application \mathscr{C}^{∞} définie sur un voisinage U de P_0 dans $\mathbb{R}_n[X]$ à valeurs dans un voisinage V de P_0 telle que

$$\forall P \in U, \forall x \in V, x = \varphi(P) \iff P(x) = 0$$

Application 38. Soit \mathscr{S}_{rs} l'ensemble des polynômes de $\mathbb{R}_n[X]$ scindés à racines simples. Alors, \mathscr{S}_{rs} est un ouvert de $\mathbb{R}_n[X]$.

4. Surjectivité de l'exponentielle matricielle

Lemme 39. (i) Soit $A \in \mathcal{M}_n(\mathbb{C})$. Alors $\exp(A) \in GL_n(\mathbb{C})$.

[**I-P**] p. 396

- (ii) exp est différentiable en 0 et d $\exp_0 = id_{\mathcal{M}_n(\mathbb{C})}$.
- (iii) Soit $M \in GL_n(\mathbb{C})$. Alors $M^{-1} \in \mathbb{C}[M]$.

Théorème 40. $\exp: \mathcal{M}_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$ est surjective.

Application 41. $\exp(\mathcal{M}_n(\mathbb{R})) = \mathrm{GL}_n(\mathbb{R})^2$, où $\mathrm{GL}_n(\mathbb{R})^2$ désigne les carrés de $\mathrm{GL}_n(\mathbb{R})$.

Annexes

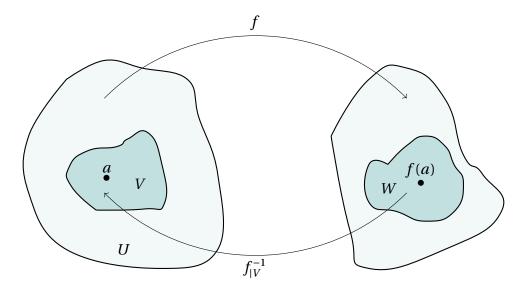


FIGURE 1 – Inversion locale.

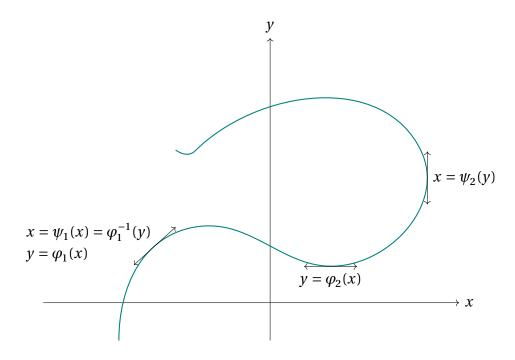


FIGURE 2 – Fonctions implicites.

[**BMP**] p. 10

Bibliographie

Objectif agrégation [BMP]

Vincent Beck, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

Petit guide de calcul différentiel

[ROU]

François Rouvière. *Petit guide de calcul différentiel. à l'usage de la licence et de l'agrégation.* 4° éd. Cassini, 27 fév. 2015.

 $\verb|https://store.cassini.fr/fr/enseignement-des-mathematiques/94-petit-guide-de-calcul-differentiel-4e-ed.html|.$