Invariants de similitude

Nous montrons l'existence et l'unicité des invariants de similitude d'un endomorphisme d'un espace de dimension finie en utilisant la dualité.

Soit *E* un espace vectoriel de dimension finie $n \ge 1$ sur un corps commutatif \mathbb{K} . Soit $f \in \mathcal{L}(E)$.

[**GOU21**] p. 398

Notation 1. Soit $x \in E$. On note P_x le polynôme unitaire engendrant l'idéal $\{P \in \mathbb{K}[X] \mid P(f)(x) = 0\}$ (un tel polynôme existe car $\mathbb{K}[X]$ est principal et cet idéal est non réduit à $\{0\}$) et $E_x = \{P(f)(x) \mid P \in \mathbb{K}[X]\}$.

- **Lemme 2.** (i) Si $k = \deg(\pi_f)$, alors $\mathbb{K}[f]$ est un sous-espace vectoriel de $\mathcal{L}(E)$ de dimension k, dont une base est $(f^i)_{i \in [0,k-1]}$.
 - (ii) Soit $x \in E$. Si $l = \deg(P_x)$, alors E_x est un sous-espace vectoriel de E de dimension l, dont une base est $(f^i(x))_{i \in [\![0,l-1]\!]}$.

Démonstration. (i) Montrons que la famille $(f^i)_{i \in [0,k-1]}$ est à la fois libre et génératrice.

p. 61

- Soit $P(f) \in \mathbb{K}[f]$. On fait la division euclidienne de P par π_f dans $\mathbb{K}[X]$ pour écrire $P = \pi_f Q + R$ avec $Q, R \in \mathbb{K}[X]$ et $\deg(R) < k = \deg(\pi_f)$. En évaluant en f, cela donne $P(f) = R(f) \in \operatorname{Vect}(\operatorname{id}_E, \dots, f^{k-1})$. Donc la famille est génératrice.
- Si $\sum_{i=0}^{k-1} \lambda_i f^i = 0$, alors le polynôme $P = \sum_{i=0}^{k-1} \lambda_i X^i$ vérifie P(f) = 0. Donc $\pi_f \mid P$, et comme $\deg(P) < \deg(\pi_f)$, on a P = 0. Donc $\lambda_0 = \dots = \lambda_{k-1} = 0$. Donc la famille est libre.
- (ii) La deuxième assertion se montre sensiblement de la même manière.

p. 290

Lemme 3. Il existe $x \in E$ tel que $P_x = \pi_f$.

La démonstration est un peu trop longue pour être incluse ici : c'est un résultat qui demande du temps pour le démontrer (et pourrait constituer un vrai développement à part entière). Nous vous renvoyons vers [GOU21] p. 178 pour la démonstration.

Théorème 4 (Frobenius). Il existe des sous-espaces vectoriels $F_1, ..., F_r$ de E tous stables par f tels que :

- (i) $E = \bigoplus_{i=1}^r F_i$.
- (ii) $\forall i \in [1, r]$, la restriction $f_i = f_{|F_i|}$ est un endomorphisme cyclique de F_i .
- (iii) Si $P_i = \pi_{f_i}$ est le polynôme minimal de f_i , on a $P_{i+1} \mid P_i \ \forall i \in [1, r-1]$.

La suite $(P_i)_{i \in [1,r]}$ ne dépend que de f et non du choix de la décomposition (elle est donc unique). On l'appelle **suite des invariants de** f.

Démonstration. — Existence: Soit $k = \deg(\pi_f)$. Par le Lemme 3, il existe $x \in E$ tel que $P_x = \pi_f$. Par le Lemme 2, le sous-espace $F = E_x$ est de dimension k et est stable par f et comme $\deg(P_x) = k$, la famille de vecteurs

$$(\underbrace{x}_{=e_1}, \dots, \underbrace{f^{k-1}(x)}_{=e_k})$$

forme une base de F. Complétons cette base en une base (e_1,\ldots,e_n) de E. En désignant par (e_1^*,\ldots,e_n^*) la base duale associée et en notant $\Gamma=\{e_k^*\circ f^i\mid i\in\mathbb{N}\}$, on pose

$$G = \Gamma^{\circ}$$

$$= \{x \in E \mid \forall i \in \mathbb{N}, (e_k^* \circ f^i)(x) = 0\}$$

Ainsi, G est l'ensemble des $x \in E$ tel que la k-ième coordonnée de $f^i(x)$ (dans la base $(e_1, ..., e_n)$) est nulle $\forall i \in \mathbb{N}$; G est donc un sous-espace de E stable par f. Montrons que $F \oplus G = E$.

Montrons que $F \cap G = \{0\}$. Soit $y \in F \cap G$. Si $y \neq 0$, on peut écrire $y = \lambda_1 e_1 + \dots + \lambda_p e_p$ avec $\lambda_p \neq 0$ et $p \leq k$. En composant par $e_k^* \circ f^{k-p}$, on obtient

$$\begin{split} 0 &= e_k^* \circ f^{k-p}(y) \\ &= e_k^* (\lambda_1 f^{k-p}(e_1) + \dots + \lambda_p f^{k-p}(e_p)) \\ &= e_k^* (\lambda_1 f^{k-p}(x) + \dots + \lambda_p f^{k-p}(x)) \\ &= \lambda_p \end{split}$$

Ce qui est absurde.

Montrons que $\dim(F) + \dim(G) = n$. Cela revient à montrer que $\dim(G) = n - k$. On sait que $G = \Gamma^{\circ} = (\operatorname{Vect}(\Gamma))^{\circ}$ et $\dim(\operatorname{Vect}(\Gamma)) + \dim(\operatorname{Vect}(\Gamma)^{\circ}) = n$. Montrons donc que $\dim(\operatorname{Vect}(\Gamma)) = k$. Posons

$$\varphi : \begin{array}{ccc} \mathbb{K}[f] & \to & \mathrm{Vect}(\Gamma) \\ g & \mapsto & e_k^* \circ g \end{array}$$

Par définition de Γ , φ est surjective. Soit $g \in \text{Ker}(\varphi)$. On a alors $e_k^* \circ g = 0$, et comme $g \in \mathbb{K}[f]$,

$$g = \lambda_1 \operatorname{id} + \dots \lambda_p f^{p-1}$$
 avec $\lambda_p \neq 0$ et $p \leq k$

On a donc $0 = e_k^* \circ g(f^{k-p}(x)) = \lambda_p \neq 0$. Ainsi, g = 0 et ϕ est un isomorphisme. Donc $\dim(\operatorname{Vect}(\Gamma)) = \dim(\mathbb{K}[f]) = k$ par le Lemme 2, ce que l'on voulait.

Soit P_1 le polynôme minimal de $f_{|F}$ (qui est le polynôme minimal de f car $P_1 = \pi_{f_{|F}} = \pi_{f^{=}P_x} \pi_f$). Soit P_2 le polynôme minimal de $f_{|G}$. Comme G est stable par f, on a $P_1(f_{|G}) = \pi_f(f_{|G}) = 0$, donc $P_2 \mid P_1$. Il suffit alors de réitérer en remplaçant f par $f_{|G}$ et E par G pour obtenir la décomposition voulu.

— <u>Unicité</u>: Soient F_1, \ldots, F_r et $G_1, \ldots G_s$ des sous-espaces vectoriels stables par f qui vérifient le Point (i), le Point (ii) et le Point (iii). On note pour tout $i, P_i = \pi_{f_{|F_i}}$ et $Q_i = \pi_{f_{|G_i}}$. On suppose par l'absurde $(P_1, \ldots, P_r) \neq (Q_1, \ldots, Q_s)$. Soit $j = \min\{i \mid P_i \neq Q_i\}$. Comme $E = \bigoplus_{i=1}^r F_i$ (où

Invariants de similitude

 $\forall i \in [1, r], F_i \text{ est stable par } f \text{ et } \forall k \ge j \ge 1, P_i(f)(F_k) = 0)$:

$$P_i(f)(F_1) \oplus \cdots \oplus P_i(f)(F_{i-1}) = P_i(f)(E) \tag{*}$$

De même,

$$P_{i}(f)(G_{1}) \oplus \cdots \oplus P_{i}(f)(G_{i-1}) \oplus P_{i}(f)(G_{i}) \oplus \cdots \oplus P_{i}(f)(G_{s}) = P_{i}(f)(E)$$
 (**)

Notons que l'on a $\forall i \in [1, j-1]$, $\dim(P_j(f)(F_i)) = \dim(P_j(f)(G_i))$. En effet, on peut trouver une base \mathcal{B}_i de F_i et une base \mathcal{B}_i' de G_i telles que $\mathrm{Mat}(f_{|F_i}, \mathcal{B}_i) = \mathrm{Mat}(f_{|G_i}, \mathcal{B}_i')$ par cyclicité de $f_{|F_i}$ et $f_{|G_i}$. En prenant les dimensions dans (*) et (**), on en déduit :

$$0 = \dim(P_j(f)(G_j)) = \dots = \dim(P_j(f)(G_s)) \implies Q_j \mid P_j$$

Par symétrie, on a de même $P_i \mid Q_i$. D'où $P_i = Q_i$: absurde.

Bibliographie

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$